В процессе клеточного этапа дыхания происходит. Доклад: Клеточное дыхание. Поток энергии в клетке

Фотосинтез и дыхание - два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый - в растительных и некоторых бактериальных, второй - и в животных, и в растительных, и в грибных, и в бактериальных.

Можно сказать, что клеточное дыхание и фотосинтез - процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется а при втором - наоборот. Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ. Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание - для выработки энергии.

Фотосинтез: где и как это происходит?

Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.

Фотосинтез, характерный для растений, можно выразить следующим уравнением:

  • 6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2 .

То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.

Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.

Вот пример выработки аминокислоты из неорганических соединений:

  • 6СО 2 + 4Н 2 О + 2SO 4 2- + 2NO 3 - + 6Н + = 2C 3 H 7 O 2 NS + 13О 2 .

Аэробное клеточное дыхание характерно для всех остальных организмов, в том числе животных и растений. Оно происходит при участии кислорода.

У представителей фауны клеточное дыхание происходит в специальных органоидах. Они называются митохондриями. У растений также клеточное дыхание происходит в митохондриях.

Этапы

Клеточное дыхание проходит в три стадии:

  1. Подготовительный этап.
  2. Гликолиз (анаэробный процесс, не требует кислорода).
  3. Окисление (аэробный этап).

Подготовительный этап

Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов - жирные кислоты и глицерин, из сложных углеводов - глюкоза. Эти соединения транспортируются в клетку, а затем - непосредственно в митохондрии.

Гликолиз

Он заключается в том, что под действием ферментов глюкоза расщепляется до пировиноградной кислоты и атомов водорода. При этом образуется Этот процесс можно выразить таким уравнением:

  • С 6 Н 12 О 6 = 2С 3 Н 3 О 3 + 4Н + 2АТФ.

Таким образом, в процессе гликолиза из одной молекулы глюкозы организм может получить две молекулы АТФ.

Окисление

На данном этапе образовавшаяся во время гликолиза под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.

Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 - на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.

Структура митохондрий

Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в Они обладают шаровидной формой и размером около 1 микрона.

Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.

Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.

Происхождение двухмембранных органоидов

Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.

КЛЕТОЧНОЕ ДЫХАНИЕ

Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания.

С кровью кислород проникает в клетку, вернее в особые клеточные структуры митохондрии. Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Дыхание это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

Общее уравнение дыхания имеет следующий вид:

Где Q=2878 кДж/моль.

Но дыхание, в отличие от горения, процесс многоступенчатый. В нем выделяют две основные стадии: гликолиз и кислородный этап.

Гликолиз

Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. гликис - сладкий и лисис распад). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.

Гликолиз процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно.

Кислородный этап дыхания

Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. Дожигание происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу. Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода.

Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры очень богатый источник энергии. Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки неприкосновенный запас.

Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.

Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести выход молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше.

Как устроена дыхательная цепь?

Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты соседи по дыхательной цепи соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз прошивает ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались. А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

Дыхание, приносящее вред.

Молекулярный кислород мощный окислитель. Но как сильнодействующее лекарство, он способен давать и побочные эффекты. Например, прямое взаимодействие кислорода с липидами вызывает появление ядовитых перекисей и нарушает структуру клеток. Активные соединения кислорода могут повреждать также белки и нуклеиновые кислоты.

Почему же не происходит отравления этими ядами? Потому, что им есть противоядие. Жизнь возникла в отсутствие кислорода, и первые существа на Земле были анаэробными. Потом появился фотосинтез, а кислород как его побочный продукт начал накапливаться в атмосфере. В те времена этот газ был опасен для всего живого. Одни анаэробы погибли, другие нашли бескислородные уголки, например, поселившись в комочках почвы; третьи стали приспосабливаться и меняться. Тогда-то и появились механизмы, защищающие живую клетку от беспорядочного окисления. Это разнообразные вещества: ферменты, в том числе разрушитель вредоносной перекиси водорода катализа, а также многие другие небелковые соединения.

Дыхание вообще сначала появилось, как способ удалять кислород из окружающей организм атмосферы и лишь потом стало источником энергии. Приспособившиеся к новой среде анаэробы стали аэробами, получив огромные преимущества. Но скрытая опасность кислорода для них все же сохранилась. Мощность антиокислительных противоядий небезгранична. Вот почему в чистом кислороде, да еще под давлением, все живое довольно скоро погибает. Если же клетка окажется повреждена каким-либо внешним фактором, то защитные механизмы обычно отказывают в первую очередь, и тогда кислород начинает вредить даже при обычной атмосферной концентрации

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с расходом энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Кофермент А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Основная статья: β-окисление

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д.. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Примечания

См. также


Wikimedia Foundation . 2010 .

    Современная энциклопедия

    Совокупность процессов, обеспечивающих поступление в организм кислорода и удаление углекислого газа (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии, необходимой для… … Большой Энциклопедический словарь

    Дыхание - ДЫХАНИЕ, совокупность процессов, обеспечивающих поступление в организм кислорода и удаление диоксида углерода (внешнее дыхание), а также использование кислорода клетками и тканями для окисления органических веществ с освобождением энергии,… … Иллюстрированный энциклопедический словарь

    ДЫХАНИЕ, я, ср. 1. Процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Клеточное д. (спец.). 2. Втягивание и выпускание воздуха лёгкими. Ровное д. Сдерживать д. Д. весны (перен.). Второе дыхание прилив… … Толковый словарь Ожегова

    ДЫХАНИЕ, ДЫХАНЬЕ, я; ср. 1. Вбирание и выпускание воздуха лёгкими или (у некоторых животных) иными соответствующими органами как процесс поглощения кислорода и выделения углекислого газа живыми организмами. Органы дыхания. Шумное, тяжёлое,… … Энциклопедический словарь

    В общеупотребительном смысле обозначает ряд беспрерывно чередующихся во время жизни движений грудной клетки в форме вдоха и выдоха и обусловливающих, с одной стороны, прилив свежого воздуха в легкие, а с другой выведение из них уже испорченного… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

Клеткам живых организмов постоянно требуется энергия для осуществления различных процессов жизнедеятельности. Универсальным поставщиком этой энергии служит АТФ, которая образуется в реакциях энергетического обмена. У большинства организмов АТФ синтезируется главным образом в процессе клеточного дыхания. Клеточное дыхание — сложный процесс, в ходе которого происходит расщепление органических веществ (в конечном итоге — до простейших неорганических соединений), а высвобождающаяся энергия их химических связей запасается и затем используется клеткой (рис. 60).

Большинство живых организмов (все растения, большинство животных, грибов и протистов, многие бактерии) использует в процессе клеточного дыхания кислород. Такие организмы называются аэробами (от греч. аэр — воздух, биос — жизнь), а их тип дыхания — аэробным дыханием. Рассмотрим, как протекает процесс клеточного дыхания в аэробных условиях (т. е. в условиях свободного доступа кислорода).

Этапы клеточного дыхания. Подготовительный этап заключается в расщеплении крупных органических молекул до более простых соединений. Эти процессы происходят в пищеварительной системе (у животных) и цитоплазме клеток без использования кислорода. Под действием пищеварительных ферментов полисахариды расщепляются до моносахаридов, жиры — до глицерина и высших карбоновых кислот, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов. При этом выделяется мало энергии, она не запасается в виде АТФ, а рассеивается в виде тепла. Более того, для протекания реакций расщепления требуются определенные затраты энергии.

Вещества, образовавшиеся в результате подготовительного этапа, могут использоваться клеткой как в реакциях пластического обмена, так и для дальнейшего расщепления с целью получения энергии.

Второй этап энергетического обмена называется бескислородным или анаэробным. Он заключается в ферментативном расщеплении органических веществ, полученных в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует, более того, анаэробный этап может протекать в условиях полного отсутствия кислорода. Основным источником энергии в клетке является глюкоза, поэтому второй этап мы рассмотрим именно на примере бескислородного расщепления глюкозы — гликолиза.

Гликолиз — многоступенчатый процесс бескислородного расщепления глюкозы (С 6 Н 12 0 6) до пировиноградной кислоты (С 3 Н 4 0 3). Реакции гликолиза катализируются специальными ферментами и протекают в цитоплазме клеток.

В ходе гликолиза каждая молекула глюкозы расщепляется до двух молекул пировиноградной кислоты (ПВК)- При этом высвобождается энергия, часть которой рассеивается в виде тепла, а оставшаяся используется для синтеза 2 молекул АТФ. Промежуточные продукты гликолиза подвергаются окислению — от них отщепляются атомы водорода, которые используются для восстановления НДД + .

НАД — никотинамидадениндинуклеотид (полное название приводится не для запоминания) — вещество, которое выполняет в клетке функцию переносчика атомов водорода. НАД, присоединивший два атома водорода, называется восстановленным (записывается как НАД"Н+Н +). Восстановленный НАД может отдавать атомы водорода другим веществам и переходить в окисленную форму (НАД +).

Таким образом, процесс гликолиза можно выразить следующим суммарным уравнением (для упрощения во всех уравнениях реакций энергетического обмена не указаны молекулы воды, образующиеся при синтезе АТФ):

С 6 Н 12 0 6 + 2НАД + + 2АДФ + 2Н 3 Р0 4 ->. 2С 3 Н 4 0 3 + 2НАДН+Н+ + 2АТФ.

В результате гликолиза высвобождается лишь около 5 % энергии, заключенной в химических связях молекул глюкозы. Значительная часть энергии содержится в продукте гликолиза — ПВК- Поэтому при аэробном дыхании после гликолиза следует завершающий этап — кислородный, или аэробный.

Пировиноградная кислота, образовавшаяся в результате гликолиза, поступает в матрикс митохондрий, где полностью расщепляется и окисляется до конечных продуктов — С0 2 и Н 2 0. Восстановленный НАД, образовавшийся при гликолизе, также поступает в митохондрии, где подвергается окислению. В ходе аэробного этапа дыхания потребляется кислород и синтезируются 36 молекул АТФ (в расчете на 2 молекулы ПВК)- С0 2 выделяется из митохондрий в гиалоплазму клетки, а затем в окружающую среду. Итак, суммарное уравнение кислородного этапа дыхания можно представить следующим образом:

2С 3 Н 4 0 3 + 60 2 + 2НАДН+Н+ + 36АДФ + 36Н 3 Р0 4 ->. 6С0 2 + 6Н 2 0 + + 2НАД+ + 36АТФ.


В матриксе митохондрий ПВК подвергается сложному ферментативному расщеплению, продуктами которого являются углекислый газ и атомы водорода. Последние доставляются переносчиками НАД и ФАД (флавинадениндинуклеотид) на внутреннюю мембрану митохондрии (рис. 61).

Во внутренней мембране митохондрий содержится фермент АТФ - с и н те таз а, а также белковые комплексы, образующие электрон-транспортную цепь (ЭТЦ). В результате функционирования компонентов ЭТЦ атомы водорода, полученные от НАД и ФАД, разделяются на протоны (Н +) и электроны. Протоны переносятся через внутреннюю мембрану митохондрий и накапливаются в межмембранном пространстве. Электроны с помощью ЭТЦ доставляются в матрикс на конечный акцептор — кислород (0"). В результате образуются анионы О 2- .

Накопление протонов в межмембранном пространстве ведет к возникновению электрохимического потенциала на внутренней мембране митохондрий. При достижении определенной концентрации протоны начинают перемещаться в матрикс, проходя через специальные каналы фермента АТФ-синтетазы. Электрохимическая энергия используется для синтеза большого количества молекул АТФ. В матриксе протоны соединяются с анионами кислорода и образуется вода: 2Н+ + О 2- — НоО.

Следовательно, при полном расщеплении одной молекулы глюкозы клетка может синтезировать 38 молекул АТФ (2 молекулы в процессе гликолиза и 36 молекул в ходе кислородного этапа). Общее уравнение аэробного дыхания можно записать следующим образом:

С 6 Н 12 0 6 + 60 2 + 38АДФ + 38Н 3 Р0 4 ->. 6С0 2 + 6Н 2 0 + 38АТФ.

Основным источником энергии для клеток являются углеводы, но в процессах энергетического обмена также могут использоваться продукты расщепления жиров и белков.

1. Клеточное дыхание относится к процессам ассимиляции или диссимиляции? Почему?

2. Что представляет собой процесс клеточного дыхания? Откуда берется энергия для синтеза АТФ в процессе клеточного дыхания?

3. Перечислите этапы клеточного дыхания. Какие из них сопровождаются синтезом АТФ? Какое количество АТФ (в расчете на 1 моль глюкозы) может образоваться в ходе каждого этапа?

4. Где осуществляется гликолиз? Какие вещества необходимы для протекания гликолиза? Какие конечные продукты при этом образуются?

5. В каких органоидах происходит кислородный этап клеточного дыхания? Какие вещества вступают в этот этап? Какие продукты образуются?

6. В подготовительный этап клеточного дыхания вступает 81 г гликогена. Какое максимальное количество АТФ (моль) может синтезироваться в результате последующего гликолиза? В ходе аэробного этапа дыхания?

7. Почему расщепление органических соединений при участии кислорода энергетически более эффективно, чем при его отсутствии?

8. Длина митохондрий колеблется от 1 до 60 мкм, а ширина — в пределах 0,25—1 мкм. Почему при столь значительных различиях в длине митохондрий их ширина относительно невелика и сравнительно постоянна?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород . При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

1. бескислородный , в процессе которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

2. кислородный , в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т. п). Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С 6) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С 3). При этом образуются две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД + (никотинамидадениндинуклеотид), который переходит в свою восстановленную форму НАД ∙ Н + Н + . НАД - кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

H → H + + e — ,

а второй присоединяется к НАД или НАДФ целиком:

НАД + + Н + [Н + + е — ] → НАД ∙ Н + Н + .

Свободный протон позднее используется для обратного окисления кофермента.

Суммарно реакция гликолиза имеет вид

С 6 Н 12 O 6 + 2АДФ + 2Н 3 РO 4 + 2НАД + → 2С 3 Н 4 O 3 + 2АТФ + 2НАД ∙ Н + Н + + 2Н 2 O.

Продукт гликолиза - пировиноградная кислота (С 3 Н 4 O 3) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до СO 2 и Н 2 O. Этот процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировинофадной кислоты, 2) цикл трикарбоновых кислот (цикл Кребса); 3) заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А (сокращенно его обозначают КоА), в результате чего образуется адетилкофермент А с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула СO 2 (первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н + .

Вторая стадия - цикл Кребса (названный так в честь открывшего его английского ученого Ганса Кребса).

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой (четырехутлеродное соединение), в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее превращение идет через образование ряда органических кислот, в результате чего ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул СO 2 . При декарбоксилировании для окисления атомов углерода до СO 2 используется кислород, отщепляемый от молекул воды. В конце цикла щавелево-уксусная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. В процессе цикла используются три молекулы воды, выделяются две молекулы СO 2 и четыре пары атомов водорода, которые восстанавливают соответствующие коферменты (ФАД - флавина-дениндинуклеотид и НАД). Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + ЗН 2 O + ЗНАД + + ФАД + АДФ + H 3 PO 4 → КоА + 2СO 2 + ЗНАД ∙ Н + Н + + ФАД ∙ Н 2 + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется ЗСO 2 , 4НАД ∙ Н + Н + , ФАД ∙ Н 2 .

Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

С 6 Н 12 O 6 + 6Н 2 O + 10НАД + 2ФАД → 6СO 2 + 4АТФ + 10НАД ∙ Н + Н + + 2ФАД ∙ Н 2 .

Третья стадия - электронтранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов окисляются молекулярным кислородом до Н 2 O с одновременным фосфорилированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Н 2 и ФАД ∙ Н 2 , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2Н + + 2е — . Именно в таком виде они и передаются по цепи переносчиков. Путь переноса водорода и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или атом водорода, окисляется, а молекула, воспринимающая электрон или атом водорода, восстанавливается. Движущей силой транспорта атомов водорода в дыхательной цели является разность потенциалов.

С помощью переносчиков ионы водорода Н + переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство.

При переносе пары электронов от НАД на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе электроны переносятся на внутреннюю сторону мембраны и акцептируются кислородом.

½O 2 + 2e — → O 2- .

В результате такого переноса ионов Н + на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается повышенная концентрация их, т. е. возникает электрохимический градиент протонов (ΔμН +).

Протонный градиент представляет собой как бы резервуар свободной энергии. Эта энергия используется при обратном потоке протонов через мембрану для синтеза АТФ. В ряде случаев может наблюдаться непосредственное использование энергии протонного градиента (ΔμН +). Она может обеспечивать осмотическую работу и транспорт веществ через мембрану против градиента их концентрации, использоваться на механическую работу и др. Таким образом, клетка располагает двумя формами энергии - АТФ и ΔμH + . Первая форма - химическая. АТФ растворяется в воде и легко используется в водной фазе. Вторая (ΔμH +) - электрохимическая - неразрывно связана с мембранами. Эти две формы энергии могут переходить друг в друга. При образовании АТФ используется энергия ΔμH + , при распаде АТФ энергия может аккумулироваться в виде ΔμH + .

Когда протонный градиент достигает определенной величины, ионы водорода из Н + -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О 2- , и образуется вода: 2Н + + О 2- → Н 2 O.

Процесс образования АТФ в результате переноса ионов Н + через мембрану митохондрии получил название окислительного фосфорилирования . Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н + через мембрану).

Следует обратить внимание на то, что ферментные системы ориентированы в митохондриях противоположно тому, как это имеет место в хлоропластах: в хлоропластах Н + -резервуар находится с внутренней стороны внутренней мембраны, а в митохондриях - с ее наружной стороны; при фотосинтезе электроны движутся в основном от воды к переносчикам атомов водорода, при дыхании же переносчики водорода, передающие электроны в электронтранспортную цепь, находятся с внутренней стороны мембраны, а электроны в конечном счете включаются в образующиеся молекулы воды.

Кислородный этап, таким образом, дает энергии в 18 раз больше, чем ее запасается в результате гликолиза. Суммарное уравнение аэробного дыхания можно выразить следующим образом:

С 6 Н 12 О 6 + 6O 2 + 6Н 2 O + 38АДФ + З8Н 3 РО 4 → 6СO 2 + 12Н 2 O + 38АТФ.

Совершенно очевидно, что аэробное дыхание прекратится в отсутствие кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии для образования АТФ окажется блокированным.