Ли у луны. Вращается ли Луна вокруг своей оси: как происходит вращение Луны. Темная сторона Луны



Разбросанное собирается. Собранное исчезает.
- Гераклит

Думая о Солнечной системе, вы представляете себе планеты и другие объекты, вращающиеся вокруг центральной звезды, с лунами (и другими спутниками), вращающимися вокруг этих гигантских каменистых или ледяных миров. Но могут ли быть дополнительные уровни? Могут ли спутники вращаться вокруг лун, и если да, то где же они? На этой неделе ответа на вопрос удостаивается kilobug, спрашивающий:

В Солнечной системе, насколько я знаю, не существует «луны у луны», нечто вроде астероида, вращающегося вокруг луны планеты. Есть ли тому причина (например, нестабильность орбиты)? Или это просто редко бывает?

Задумаемся об отдельной массе, вращающейся в космосе. Тут всё просто. Имеется гравитационное поле этого объекта, порождаемое его массой. Он закручивает пространство вокруг себя, и заставляет всё, что находится поблизости, притягиваться к нему. Если бы кроме гравитации ничего не было, можно было бы поместить любой объект на стабильную эллиптическую или круговую орбиту, где он вращался бы вечно.

Но существуют и другие факторы, включая:
Наличие у объекта атмосферы, рассеянного «гало» из частиц.
Необязательность стационарности объекта, возможное наличие вращение, возможно, быстрого.
Необязательность изолированности объекта.



Атмосфера влияет в самых крайних случаях. Обычно объекту, вращающемуся вокруг массивного твёрдого мира без атмосферы, нужно было бы просто избегать поверхности объекта, и такое вращение может длиться вечно.

Но если добавить атмосферу, пусть и очень разреженную, любые тела на орбите будут взаимодействовать с атомами и частицами, окружающими центральную массу. Несмотря на то, что нам кажется, что у нашей атмосферы есть «край», и на определённой высоте начинается космос, на самом деле атмосфера всё больше разрежается на всё больших высотах. Атмосфера Земли простирается на сотни километров. Даже МКС когда-нибудь снизится и сгорит, если её не подталкивать.

На временных масштабах Солнечной системы, измеряющихся миллиардами лет, телам, движущимся по орбите, необходимо находиться достаточно далеко от массы, вокруг которой они обращаются, чтобы быть «в безопасности».

Объект может вращаться. Это бывает с большими массами, и малыми массами, вращающимися вокруг больших. Существует «стабильное» состояние, в котором обе массы приливно связаны друг с другом (оба тела повёрнуты друг к другу одной стороной), но в любой другой конфигурации будут проявляться крутильные моменты. Эти моменты могут привести к тому, что объекты будут по спирали падать друг на друга, или разлетаться друг от друга. Иначе говоря, большинство спутников не начинают жизнь в идеальной конфигурации.

Но для полного описания ситуации «лун у лун» необходимо учесть ещё один, самый сложный фактор.

Объекты не изолированы, и это очень важно. Очень просто сделать так, чтобы объект вращался вокруг одного массивного тела – так, как луна вокруг планеты, малый астероид вокруг крупного, Харон вокруг Плутона – то есть, сделать так, чтобы объект вращался вокруг другого, который, в свою очередь, вращается вокруг ещё более массивного. Обычно этот фактор мы не принимаем во внимание. Но задумайтесь о нём на примере нашей самой внутренней планеты, Меркурия.

Меркурий относительно быстро вращается вокруг Солнца, поэтому гравитационные и приливные силы, действующие на него, велики. Если бы вокруг Меркурия вращалось ещё что-нибудь, нужно было бы учитывать много дополнительных факторов:
1. Солнечный ветер (поток частиц) встречался бы с Меркурием и его спутником, меняя их орбиты.
2. Тепло от Солнца может привести к расширению атмосферы Меркурия. И хотя воздуха на нём нет, частицы поверхности разогреваются и выбрасываются в космос, создавая незначительную, но не пренебрежимую атмосферу.
3. Существует третья масса, стремящаяся не только связать Меркурий и его спутник, но и Меркурий и Солнце.

Это значит, что для спутника Меркурия есть два варианта.

Если спутник слишком близко к Меркурию, а именно:
спутник вращается недостаточно быстро,
Меркурий вращается недостаточно быстро, чтобы быть соединённым с Солнцем приливными силами,
спутник замедляется солнечным ветром,
спутник тормозится об атмосферу Меркурия,

Он рано или поздно упадёт на Меркурий.

С другой стороны, объект рисковал бы быть выброшенным с орбиты вокруг Меркурия, если бы он находился слишком далеко, или же:
объект вращался бы слишком быстро,
Меркурий вращался бы слишком быстро,
Солнечный ветер придавал бы объекту дополнительную скорость,
тяготение других планет влияло бы на объект,
нагрев от Солнца добавлял небольшому спутнику достаточное количество кинетической энергии.

Учтя всё вышесказанное, вспомним, что существуют планеты с лунами! И хотя система трёх тел не будет стабильной, если только не привести её в упомянутую конфигурацию, при правильных условиях стабильности можно достичь на промежутках в миллиарды лет – а это всё, что нам нужно. Есть условия, облегчающие нашу задачу:
1. Удалить планету/астероид, являющуюся основным массивным телом, подальше от Солнца, чтобы солнечный ветер, вспышки и приливные силы были малы.
2. Приблизить спутник нашего небесного тела поближе к телу, чтобы он гравитационно был сильно привязан к нему и его не утянули внешние гравитационные или механические взаимодействия.
3. При этом спутник нужно держать достаточно далеко от основного тела, чтобы приливные силы, силы трения и другие воздействия не привели к их взаимному столкновению.

Вы могли догадаться, что для луны существует «правильное расположение» – удаление, в несколько раз большее радиуса планеты, но не настолько сильное, чтобы период обращения был велик. Период обращения вокруг планеты должен быть гораздо меньше, чем период обращения планеты вокруг звезды.

Учтя всё это, почему же мы не видим спутники у лун в нашей Солнечной системе?

Лучше всего на эту роль претендуют троянские астероиды со своими персональными спутниками, но так как они не являются лунами Юпитера, это несколько не то. Что же тогда?

Если проще, мы скорее всего, такого не увидим, но надежда есть. Газовые гиганты довольно стабильны и удалены от Солнца. У них множество лун, многие из которых связаны приливными силами с родительским миром. Крупные луны лучше всего подходят для того, чтобы обладать спутниками. Наилучшие кандидаты:
настолько тяжёлые, насколько это возможно,
находятся относительно далеко от родительского небесного тела для минимизации падения,
находятся достаточно недалеко для того, чтобы их сорвало с орбиты,
достаточно отделены от других лун, колец и спутников, могущих принести возмущения в систему.

Какие же главные кандидаты на луны в нашей Солнечной системе, способные иметь свои стабильные спутники?
Каллисто, луна Юпитера. Самый дальний из всех основных спутников, отдалён на 1 883 000 км, и с большим радиусом в 2 410 км. Достаточно долгий период обращения в 16,7 дней, и немаленькая скорость убегания, 2,44 км/с.
Ганимед, луна Юпитера. Крупнейшая луна Солнечной системы (радиус 2 634 км). Отдалён от Юпитера на 1 070 000 км – возможно, не слишком далеко, это две трети расстояния от Юпитера до Европы. Крупнейшая скорость убегания среди всех лун Солнечной системы (2,74 км/с), но перенаселённая юпитерианская система делает шансы обладания собственными лунами небольшими.
Япет, луна Сатурна. Небольшая, 734 км, но удалённая от Сатурна на 3 561 000 км. Довольно далеко от колец Сатурна и отделена от остальных больших лун. Минус в её малой массе и размере – скорость убегания составляет всего 573 м/с.
Титания, луна Урана. Крупнейшая из его лун, радиус 788 км, расположена в 436 000 км от Урана, период обращения 8,7 дней.
Оберон, луна Урана. Вторая по величине луна (761 км), самая удалённая (584 000 км), период обращения 13,5 дней. Но Оберон и Титан находятся слишком близко друг к другу, чтобы допустить комбинацию «луна у луны».
Тритон, луна Нептуна. Большой объект, захваченный из пояса Койпера, радиус 1 355 км, отдалён от Нептуна на 355 000 км и массивен. Скорость убегания – 1,4 км/с. Он был бы моим лучшим кандидатом на луну планеты, имеющую собственный естественный спутник.

Но я всё-таки не стал бы ждать такого явления. Условия для появления и сохранения «луны у луны» представляют существенные трудности, если вспомнить, как много объектов, способных помешать гравитационно, существует вблизи газовых гигантов. В случае принятия ставок я бы поставил на Япет и Тритон, поскольку они дальше других находятся от своих миров, изолированы от массивных тел, и скорость убегания от их поверхности довольно велика.

Но пока такие конфигурации нам неизвестны. Возможно, все эти рассуждения неверны, и нам следует поискать объекты на дальних рубежах пояса Койпера, или даже облака Оорта, где для нашей Солнечной системы имеются наибольшие шансы.

Насколько мы знаем, эти объекты могут существовать. Это возможно, но требует особых условий. Наши наблюдения пока говорят о том, что такие условия в Солнечной систем не встречаются. Но точно сказать нельзя: Вселенная полна сюрпризов. И с увеличением наших возможностей поисков увеличатся и наши находки. Я бы не сильно удивился, если бы следующая миссия к Юпитеру или другим газовым гигантам обнаружила такое явление!

Возможно, что луны у лун существует, и для их открытия требуется лишь поискать в нужном месте?

> > Вращается ли Луна

Вращение Луны по орбите и вокруг своей оси – описание для детей с фото: как вращается Луна, что такое темная сторона, скорость оборота вокруг оси и Земли.

Вращение Луны кажется интересной темой для того, чтобы привлечь детей к астрономии. Луна - ближайший объект к Земле, влияющий на наши жизни. Мы всегда видим ее в небе, способны отмечать фазы Луны и всегда мечтаем заглянуть на темную (обратную сторону). Но есть ли такая и как происходит вращение Луны вокруг Земли?

Если дети были внимательны, то могли заметить, что Луна повернута к планете одной стороной. Потому неудивительно, что в среде для самых маленьких возникает вопрос: «Есть ли у Луны осевое вращение?». Родители или учителя в школе могут справедливо сказать: «Да», но придется объяснить детям , как все устроено.

Темная сторона Луны - объяснение для детей

Начать объяснение для детей можно с того, что Луна совершает оборот вокруг нас за 27.322 дня (считайте, что это скорость вращения Луны). Однако, на осевое вращение у нее также уходит 27 дней. Поэтому земному наблюдателю кажется, что она стоит на месте. Этот эффект называют синхронным вращением.

Сторона, направленная постоянно на , называется ближней, а вторая – обратной. Иногда вторую называют еще темной стороной Луны, но это не совсем соответствует действительности, так как в момент нахождения спутника между и нашей планетой (новолуние) вторая сторона освещена светом.

Но ее орбита и вращение не полностью одинаковы. Спутник обходит планету по вытянутой эллиптической орбите. Когда он подходит к нам максимально близко, то замедляет скорость вращения, что открывает доступ к наблюдению дополнительных 8 градусов восточной стороны. А вот в отдалении Луна ускоряется и показывает еще 8 градусов, но уже на западе.

Если бы вы повторили прогулку астронавтов с Аполлона-8 по дальней стороне, то разглядели бы совершенно иную поверхность. Пока ближняя усеяна морями (большие темные равнины, созданные заставшими лавовыми потоками), дальняя – кратерами.

Изменения в орбите Луны - объяснение для детей

Важно объяснить детям , что такая схожесть осевого вращения и орбитального была не всегда. Пока лунная гравитация влияет на приливы, земная воздействует на сам спутник. Но Луна лишена океана, поэтому изменяется поверхность, выпячиваясь в сторону нашей планеты. Из-за этого создается эффект трения, который тормозит лунное вращение. Это длилось так долго, что сейчас мы наблюдаем эту синхронизацию и блокировку, из-за которого одна лунная сторона всегда смотрит на Землю.

Но дети должны знать, что Луна не уникальная в этом вопросе. Многие крупные спутники вынуждены застревать в подобной связи с планетой. Если рассматривать большие луны, то только спутник Гиперион не страдает синхронизацией, вращаясь хаотично и взаимодействуя с другими спутниками.

И это не ограничивается только планетами. Например, карликовая планета также притягивается к своему спутнику Харону, который почти такой же большой, как и хозяин. Но эти связи обоюдные, поэтому Земля также получает замедление. Можно проследить это на длительности дня – увеличивается на несколько миллисекунд каждый век.

В Солнечной системе есть Солнце - в центре - много планет, астероидов, объекты пояса Койпера и спутники, они же луны. Хотя у большинства планет есть спутники, а у некоторых объектов пояса Койпера и даже астероидов тоже есть собственные спутники, известных «спутников спутников» среди них нет. То ли нам не повезло, то ли фундаментальные и крайне важные правила астрофизики усложняют их образование и существование.

Когда все, что вам нужно иметь в виду, это один массивный объект в пространстве, все кажется довольно простым. Гравитация будет единственной рабочей силой, и вы сможете разместить любой объект на стабильной эллиптической или круговой орбите вокруг него. По такому сценарию, вроде бы, он будет находиться на своей позиции вечно. Но здесь в игру вступают прочие факторы:

  • у объекта может быть в некоем роде атмосфера или диффузное «гало» частиц вокруг;
  • объект не обязательно будет стационарным, а будет вращаться - вероятно, быстро - вокруг оси;
  • этот объект не обязательно будет изолирован, как вы думали изначально.

Приливных сил, которые действуют на спутник Сатурна Энцелад, достаточно, чтобы вытягивать его ледяную корку и нагревать недра, так что подповерхностный океан извергается на сотни километров в космос

Первый фактор, атмосфера, имеет смысл только в самом крайнем случае. Обычно объекту, который вращается вокруг массивного и твердого мира без атмосферы, будет достаточно избегать поверхности этого объекты, и он будет держаться рядом бесконечно долго. Но если прирастить атмосферу, даже невероятно диффузную, любому телу на орбите придется иметь дело с атомами и частицами, окружающими центральную массу.

Несмотря на то, что мы обычно считаем, что у нашей атмосферы есть «конец» и на определенной высоте начинается космос, реальность такова, что атмосфера просто истощается, когда вы поднимаетесь все выше и выше. Атмосфера Земли простирается на много сотен километров; даже Международная космическая станция сойдет с орбиты и сгорит, если мы не будем ее постоянно подгонять. По меркам Солнечной системы, тело на орбите должно находиться на определенном расстоянии от какой бы то ни было массы, чтобы оставаться в «безопасности».

Будь то искусственный спутник или естественный, не имеет большого значения; если он будет находиться на орбите мира с существенной атмосферой, он сойдет с орбиты и упадет на ближайший мир. Все спутники на низкой околоземной орбите так сделают, как и спутник Марса Фобос

Кроме того, объект может вращаться. Это касается как большой массы, так и меньшей, вращающейся вокруг первой. Существует «стабильная» точка, в которой обе массы приливно заблокированы (то есть всегда обращены друг к другу одной стороной), но при любой другой конфигурации возникнет «крутящий момент». Это кручение либо закрутит обе массы по спирали внутрь (если вращение медленное) либо наружу (если вращение быстрое). В других мирах большинство спутников не рождаются в идеальных условиях. Но есть еще один фактор, который нам нужно учитывать, прежде чем с головой нырнуть в проблему «спутника спутников».

Модель системы Плутон — Харон демонстрирует две главных массы, вращающиеся одна вокруг другой. Облет «Новых горизонтов» показал, что у Плутона или Харона нет внутренних спутников относительно их взаимных орбит

Тот факт, что объект не изолирован, имеет большое значение. Гораздо проще удержать объект на орбите возле единой массы - вроде луны возле планеты, небольшого астероида возле большого или Харона возле Плутона - чем удержать объект на орбите возле массы, которая сама вращается вокруг другой массы. Это важный фактор, и мы о нем мало задумываемся. Но давайте на секунду рассмотрим его с перспективы нашей самой близкой к Солнцу, безлунной планеты Меркурий.

Меркурий вращается вокруг нашего Солнца относительно быстро, и поэтому гравитационные и приливные силы, действующие на него, очень велики. Если бы что-то еще вращалось вокруг Меркурия, было бы гораздо больше дополнительных факторов.

  1. «Ветер» от Солнца (поток исходящих частиц) врезался бы в Меркурий и объект возле него, сбивая их с орбиты.
  2. Тепло, которым Солнце одаривает поверхность Меркурия, может приводить к расширению атмосферы Меркурия. Несмотря на то, что Меркурий безвоздушный, частицы на поверхности нагреваются и выбрасываются в космос, создавая хоть и слабую, но атмосферу.
  3. Наконец, есть третья масса, которая хочет привести к окончательной приливной блокировке: не только между малой массой и Меркурием, но и между Меркурием и Солнцем.

Следовательно, для любого спутника Меркурия существует два предельных местоположения.


Каждая планета, которая вращается вокруг звезды, будет наиболее стабильной, когда приливно с ней заблокирована: когда ее орбитальный и вращательный периоды совпадают. Если добавить еще один объект на орбиту к планете, ее самая стабильная орбита будет взаимно приливно заблокирована с планетой и звездой вблизи точки L 2

Если спутник будет слишком близко к Меркурию по ряду причин:

  • вращается недостаточно быстро для своей дистанции;
  • Меркурий вращается недостаточно быстро, чтобы быть приливно заблокированным с Солнцем;
  • восприимчив к замедлению от солнечного ветра;
  • будет подвержен существенному трению меркурианской атмосферы,

в конечном итоге он упадет на поверхность Меркурия.

Когда объект сталкивается с планетой, он может поднять обломки и привести к формированию лун неподалеку. Так появилась земная Луна и так же появились спутники Марса и Плутона

И напротив, он рискует быть выброшенным с орбиты Меркурия, если спутник будет слишком далеко и будут применимы другие соображения:

  • спутник вращается слишком быстро для своей дистанции;
  • Меркурий вращается слишком быстро, чтобы оказаться приливно заблокированным с Солнцем;
  • солнечный ветер придает дополнительную скорость спутнику;
  • помехи от других планет выталкивают спутник;
  • нагрев Солнца придает дополнительную кинетическую энергию определенно маленькому спутнику.

С учетом всего сказанного, не стоит забывать, что у многих планет есть свои спутники. Хотя система из трех тел никогда не будет стабильной, если вы только не подгоните ее конфигурацию под идеальные критерии, мы будем стабильны в течение миллиардов лет при нужных условиях. Вот несколько условий, которые упростят задачу:

  1. Взять планету/астероид так, чтобы основная масса системы была значительно удалена от Солнца, чтобы солнечный ветер, вспышки света и приливные силы Солнца были несущественными.
  2. Чтобы спутник этой планеты/астероида был достаточно близок к основному телу, чтобы не сильно болтался гравитационно и не был случайно вытолкнут в процессе других гравитационных или механических взаимодействий.
  3. Чтобы спутник этой планеты/астероида был достаточно удален от основного тела, чтобы приливные силы, трение или другие эффекты не привели к сближению и слиянию с родительским телом.

Как вы, возможно, догадались, существует «сладкое яблочко», в котором луна может существовать возле планеты: в несколько раз дальше радиуса планеты, но достаточно близко, чтобы орбитальный период был не слишком длинным и все еще значительно короче орбитального периода планеты относительно звезды. Итак, если взять все это вкупе, где же спутники спутников в нашей Солнечной системе?

У астероидов в основном поясе и троянцев возле Юпитера могут быть собственные спутники, но сами они не считают себя таковыми.

Самое близкое, что у нас есть, это троянские астероиды с собственными спутниками. Но поскольку они не являются «спутниками» Юпитера, это не совсем подходит. Что тогда?

Короткий ответ: вряд ли мы найдем что-то подобное, но надежда есть. Газовые гигантские миры относительно стабильны и достаточно удалены от Солнца. У них много спутников, многие из которых приливно заблокированы со своим родительским миром. Крупнейшие луны будут лучшими кандидатами для размещения спутников. Они должны быть:

  • максимально массивны;
  • относительно удалены от родительского тела для минимизации риска столкновения;
  • не слишком удалены, чтобы не оказаться вытолкнутыми;
  • и - это новое - хорошо отделены от других лун, колец или спутников, которые могут нарушить систему.

Какие же луны в нашей Солнечной системе лучше всего подходят, чтобы обзавестись собственными спутниками?

  • Спутник Юпитера Каллисто: самый внешний из всех крупных спутников Юпитера. Каллисто, который находится на расстоянии 1 883 000 километров, также имеет радиус в 2410 километров. Вокруг Юпитера он проходит за 16,7 дня и имеет значительную скорость убегания в 2,44 км/с.
  • Спутник Юпитера Ганимед: крупнейшая луна в Солнечной системе (2634 км радиусом). Ганимед весьма далек от Юпитера (1 070 000 километров), но недостаточно. У него самая высокая скорость убегания из всех спутников в Солнечной системе (2,74 км/с), но густонаселенная система гигантской планеты крайне усложняет процесс приобретения спутников спутниками Юпитера.
  • Спутник Сатурна Япет: не особо большой (734 километра в радиусе), но достаточно удаленный от Сатурна - на 3 561 000 километров средней дистанции. Он хорошо отделен от колец Сатурна и от прочих крупных лун планеты. Проблема лишь в его малой массе и размерах: скорость убегания составляет всего 573 метра в секунду.
  • Спутник Урана Титания: с радиусом в 788 километров, крупнейший спутник Урана находится в 436 000 километров от Урана и завершает орбиту за 8,7 дня.
  • Спутник Урана Оберон: вторая по размерам (761 километр), но самая удаленная (584 000 километра) большая луна завершает орбиту вокруг Урана за 13,5 дня. Оберон и Титания, впрочем, опасно близки друг к другу, поэтому «луна луны» между ними вряд ли появится.
  • Спутник Нептуна Тритон: этот захваченный объект пояса Койпера огромен (1355 км в радиусе), далек от Нептуна (355 000 км) и массивен; объекту нужно двигаться на скорости более 1,4 км/с, чтобы покинуть поле притяжения Тритона. Возможно, это наш лучший кандидат на право владения собственным спутником.
  • Тритон, крупнейшая луна Нептуна и захваченный объект пояса Койпера, может быть нашей лучшей ставкой на луну с собственной луной. Но «Вояджер-2» ничего не увидел.

При всем этом, насколько нам известно, в нашей Солнечной системе нет спутников с собственными спутниками. Возможно, мы ошибаемся и найдем их в дальнем конце пояса Койпера или даже в облаке Оорта, где объектов пруд пруди.

Теория говорит, что такие объекты могут существовать. Это возможно, но требует крайне специфических условий. Что касается наших наблюдений, в нашей Солнечной системе таковые пока не возникали. Но кто знает: Вселенная полна сюрпризов. И чем лучше будут становиться наши возможности поиска, тем больше сюрпризов мы будем находить. Никто не удивится, если следующая грандиозная миссия к Юпитеру (или другим газовым гигантам) обнаружит спутник возле спутника. Время покажет.

Луна сопровождает нашу планету в её большом космическом путешествии вот уже несколько миллиардов лет. И показывает она нам, землянам, из века в век всегда один и тот же свой лунный пейзаж. Почему мы любуемся только одной стороной нашего спутника? Вращается ли Луна вокруг своей оси или же парит в космическом пространстве неподвижно?

Характеристики нашего космического соседа

В Солнечной системе имеются спутники гораздо крупнее Луны. Ганимед - спутник Юпитера, к примеру, в два раза тяжелее Луны. Но зато она - самый большой спутник относительно материнской планеты. Её масса составляет более процента от земной, а диаметр - около четверти земного. Таких пропорций в солнечной семье планет больше нет.

Давайте попытаемся ответить на вопрос о том, вращается ли Луна вокруг своей оси, присмотревшись повнимательнее к ближайшему нашему космическому соседу. По принятой сегодня в научных кругах теории, естественный спутник наша планета приобрела будучи ещё протопланетой - не до конца остывшей, покрытой океаном жидкой раскалённой лавы, в результате столкновения с другой планетой, меньшей по размеру. Поэтому химические составы лунного и земного грунтов слегка отличаются - тяжёлые ядра столкнувшихся планет слились, из-за чего земные породы богаче железом. Луне же достались остатки верхних слоёв обеих протопланет, там больше камня.

Вращается ли Луна

Если быть точным, то вопрос о том, вращается ли Луна, не совсем корректный. Ведь как и любой спутник в нашей системе, она оборачивается около материнской планеты и вместе с ней кружится вокруг светила. А вот, Луны не совсем обычно.

Сколько ни смотри на Луну, она всегда повёрнута к нам кратером Тихо и морем Спокойствия. «А вращается ли Луна вокруг своей оси?» − из века в век задавали себе вопрос земляне. Строго говоря, если оперировать геометрическими понятиями, ответ зависит от выбранной системы координат. Относительно Земли осевое вращение у Луны и вправду отсутствует.

А вот с точки зрения наблюдателя, расположенного на линии Солнце-Земля, осевое вращение Луны будет хорошо заметно, причём один полярный оборот до доли секунды окажется равен по длительности орбитальному.

Интересно, что явление это в Солнечной системе не уникально. Так, спутник Плутона Харон всегда смотрит на свою планету одним боком, точно так же ведут себя спутники Марса - Деймос и Фобос.

На научном языке это называется синхронным вращением или приливным захватом.

Что такое прилив?

Для того чтобы понять суть этого явления и уверенно ответить на вопрос о том, вращается ли Луна вокруг собственной оси, необходимо разобрать суть приливных явлений.

Представим себе две горы на поверхности Луны, одна из которых «смотрит» прямо на Землю, другая же находится в противоположной точке лунного шара. Очевидно, что если бы обе горы не были частью одного небесного тела, а вращались вокруг нашей планеты самостоятельно, их вращение не могло бы быть синхронным, та что ближе, по законам ньютоновской механики, должна вращаться быстрее. Именно поэтому массы лунного шара, расположенные в противоположных по направлению к Земле точках, стремятся «убежать друг от друга».

Как «остановилась» Луна

Как действуют приливные силы на то или иное небесное тело, удобно разобрать на примере нашей собственной планеты. Мы ведь тоже вращаемся вокруг Луны, а точнее Луна и Земля, как и положено в астрофизике, "водят хоровод" вокруг физического центра масс.

В результате действия приливных сил и в ближайшей, и в наиболее удалённой от спутника точке уровень воды, покрывающей Землю, поднимается. Причём максимальная амплитуда прилива-отлива может достигать 15 и более метров.

Ещё одной особенностью данного явления является то, что эти приливные «горбы» ежесуточно огибают поверхность планеты против её вращения, создавая трение в точках 1 и 2, и таким образом потихоньку останавливают Земной шар в его вращении.

Воздействие же Земли на Луну гораздо сильнее из-за разности масс. И хотя на Луне нет океана, на каменные породы приливные силы действуют ничуть не хуже. И результат их работы налицо.

Так вращается ли Луна вокруг своей оси? Ответ положительный. Но вращение это тесно связано с движением вокруг планеты. Приливные силы за миллионы лет выровняли осевое вращение Луны с орбитальным.

А что же Земля?

Астрофизики утверждают, что сразу после большого столкновения, ставшего причиной образования Луны, вращения нашей планеты была намного больше, чем сейчас. Сутки длились не более пяти часов. Но в результате трения приливных волн о дно океана год за годом, тысячелетие за тысячелетием вращение замедлялось, и нынешние сутки длятся уже 24 часа.

В среднем каждый век прибавляет нашим суткам по 20-40 секунд. Учёные предполагают, что через пару миллиардов лет наша планета будет смотреть на Луну так же, как и Луна на неё, то есть одной стороной. Правда этого, скорее всего, не произойдёт, так как ещё раньше Солнце, превратившись в красного гиганта, «проглотит» и Землю, и ее верного спутника - Луну.

Кстати, приливные силы дарят землянам не только повышение и понижение уровня мирового океана в районе экватора. Воздействуя на массы металлов в земном ядре, деформируя горячий центр нашей планеты, Луна помогает поддерживать его в жидком состоянии. А благодаря активному жидкому ядру, наша планета имеет собственное магнитное поле, защищающее всю биосферу от убийственного солнечного ветра и смертоносных космических лучей.

В 1609 году, после изобретения телескопа, человечество сумело впервые подробно рассмотреть свой космический спутник. С тех пор Луна - это наиболее изученное космическое тело, а также первое, на котором сумел побывать человек.

Первое, с чем предстоит разобраться - чем же является наш спутник? Ответ неожиданный: хотя Луна и считается спутником, технически она является такой же полноценной планетой, как и Земля. У нее большие размеры - 3476 километров в поперечнике на экваторе - и масса в 7,347×10 22 килограмм; Луна лишь немногим уступает , самой маленькой планете Солнечной Системы. Все это делает ее полноценным участником гравитационной системы Луна-Земля.

Известен и другой такой тандем в Солнечной системе, и Харон. Хотя вся масса нашего спутника составляет чуть больше сотой части массы Земли, Луна не обращается вокруг самой Земли - у них есть общий центр массы. А близость к нам спутника порождает еще один интересный эффект, приливный захват. Из-за него Луна всегда повернута к Земле одной и той же стороной.

Более того, изнутри Луна устроена как полноценная планета - у нее есть кора, мантия и даже ядро, а в далеком прошлом на ней существовали вулканы. Однако от древних ландшафтов уже ничего не осталось - на протяжении четырех с половиной миллиардов лет истории Луны на нее падали миллионы тонн метеоритов и астероидов, которые избороздили ее, оставив кратеры. Некоторые удары были настолько сильны, что прорвали ее кору вплоть до самой мантии. Котлованы от таких столкновений образовали лунные моря, темные пятна на Луне, которые легко различимы с . Более того, они присутствуют исключительно на видимой стороне. Почему? Об этом мы расскажем дальше.

Среди космических тел, Луна влияет на Землю сильнее всего - кроме, разве, Солнца. Лунные приливы, которые регулярно поднимают уровень воды в мировом океане - наиболее очевидное, но не самое сильное воздействие спутника. Так, постепенно отдаляясь от Земли, Луна замедляет вращение планеты - солнечный день вырос из первоначальных 5 до современных 24-х часов. А еще спутник служит естественным барьером против сотен метеоритов и астероидов, перехватывая их на подлете к Земле.

И вне сомнения, Луна - это лакомый объект для астрономов: как любителей, так и профессионалов. Хотя расстояние до Луны измерено с точностью до метра с помощью лазерных технологий, а образцы грунта с нее неоднократно привозили на Землю, там все еще остается место для открытий. Например, ученые охотятся за лунными аномалиями - таинственными вспышками и сияниями на поверхности Луны, не всем из которых находится объяснение. Оказывается, наш спутник скрывает гораздо больше, чем видно на поверхности - давайте же разберемся в тайнах Луны вместе!

Топографическая карта Луны

Характеристики Луны

Научному изучению Луны сегодня больше 2200 лет. Движение спутника на небосклоне Земли, фазы и расстояние от него до Земли были подробно описаны еще древними греками - а внутреннее строение Луны и ее история исследуются по сей день космическими аппаратами. Тем не менее века работы философов, а затем физиков и математиков дали весьма точные данные о том, как выглядит и движется наша Луна, и почему она именно такая. Все сведения о спутнике можно разделить на несколько категорий, взаимовытекающих друг из друга.

Орбитальные характеристики Луны

Как движется Луна вокруг Земли? Если бы наша планета была неподвижной, спутник вращался бы по почти идеальному кругу, время от времени незначительно приближаясь и отдаляясь от планеты. Но ведь и сама Земля вокруг Солнца - Луне приходится постоянно «догонять» планету. А еще наша Земля не является единственным телом, с которым наш спутник взаимодействует. Солнце, находящееся в 390 раз дальше Земли от Луны, массивнее Земли в 333 тысячи раз. И даже с учетом закона обратных квадратов, по которому интенсивность любого источника энергии резко падает при отдалении, Солнце притягивает Луну в 2,2 раза сильнее Земли!

Поэтому конечная траектория движения нашего спутника напоминает спираль, да еще и непростую. Ось лунной орбиты колеблется, сама Луна периодически приближается и отдаляется, а в глобальных масштабах и вовсе улетает от Земли. Эти же колебания приводят к тому, что видимая сторона Луны - это не одно и то же полушарие спутника, но разные его части, которые попеременно поворачиваются к Земле из-за «покачивания» спутника на орбите. Эти перемещения Луны по долготе и широте называются либрациями, и позволяют заглянуть за обратную сторону нашего спутника задолго до первого облета космическими аппаратами. С востока на запад Луна проворачивается на 7,5 градуса, а с севера на юг - на 6,5. Поэтому с Земли легко можно увидеть оба полюса Луны.

Конкретные орбитальные характеристики Луны полезны не только астрономам и космонавтам - к примеру, фотографами особенно ценится суперлуние: фаза Луны, в которой она достигает максимального размера. Это полнолуние, во время которого Луна находится в перигее. Приведем основные параметры нашего спутника:

  • Орбита Луны - эллиптическая, ее отклонение от идеального круга, составляет около 0,049. Учитывая колебания орбит, минимальное расстояние спутника до Земли (перигей) оставляет 362 тысячи километров, а максимальное (апогей) - 405 тысяч километров.
  • Общий центр массы Земли и Луны находится за 4,5 тысячи километров от центра Земли.
  • Сидерический месяц - полное прохождение Луны по своей орбите - проходит за 27,3 дня. Однако для полного оборота вокруг Земли и смены лунных фаз требуется на 2,2 дня больше - ведь за то время, что Луна идет по своей орбите, Земля пролетает тринадцатую часть собственной орбиты вокруг Солнца!
  • Луна находится в приливном захвате Земли - она вращается вокруг своей оси с той же скоростью, что и вокруг Земли. Из-за этого Луна постоянно повернута к Земле одной и той же стороной. Такое состояние характерно для спутников, которые находятся очень близко к планете.

  • Ночь и день на Луне очень долгие - по половине земного месяца.
  • В те периоды, когда Луна выходит из-за земного шара, ее видно на небе - тень нашей планеты постепенно сползает со спутника, позволяя освещать его Солнцу, а затем обратно закрывает его. Смены освещенности Луны, видимые с Земли, называются ее . Во время новолуния спутника не видно на небе, в фазе молодой Луны появляется ее тонкий серп, напоминающий завиток буквы «Р», в первой четверти Луна освещена ровно наполовину, а во время полнолуния ее заметно лучше всего. Дальнейшие фазы - вторая четверть и старая луна - происходят в обратном порядке.

Интересный факт: так как лунный месяц короче календарного, иногда за один месяц может быть два полнолуния - второе называется «голубой луной». Она такая же яркая, как и обычная полня - Землю она освещает на 0,25 люкс (для примера, обычное освещение внутри дома составляет 50 люкс). Сама Земля освещает Луну в 64 раза сильнее - целых 16 люкс. Разумеется, весь свет не собственный, а отраженный солнечный.

  • Орбита Луны наклонена к плоскости орбиты Земли и регулярно ее пересекает. Наклонение спутника постоянно меняется, варьируясь между 4,5° и 5,3°. На смену наклонения Луны уходит больше 18 лет.
  • Луна движется вокруг Земли со скоростью 1,02 км/с. Это намного меньше скорости движения Земли вокруг Солнца - 29,7 км/с. Максимальная скорость космического аппарата, достигнутая зондом для исследования Солнца «Гелиос-Б», составляла 66 километров в секунду.

Физические параметры Луны и ее состав

Для того чтобы понять, насколько большая Луна и из чего она состоит, людям понадобилось немало времени. Только в 1753 году ученый Р. Бошкович сумел доказать, что у Луны нет существенной атмосферы, равно как и жидких морей - при покрытии Луной звезды исчезают мгновенно, когда наличие дало бы возможность наблюдать их постепенное «затухание». Еще 200 лет понадобилось на то, чтобы советская станция «Луна-13» в 1966 году измерила механические свойства поверхности Луны. А про обратную сторону Луны вообще не было ничего не известно вплоть до 1959 года, пока аппарат «Луна-3» не сумел сделать первые ее снимки.

Команда космического корабля «Аполлон-11» доставила первые образцы на поверхность в 1969 году. Также они стали первыми людьми, которые побывали на Луне - до 1972 года на ней приземлилось 6 кораблей, и высадились 12 астронавтов. В достоверности этих полетов часто сомневались - однако многие пункты критиков исходили из их несведущести в космическом деле. Американский флаг, который по уверениям конспирологов «не мог развеваться в безвоздушном пространстве Луны», на самом деле твердый и статичный - его специально укрепили твердыми нитями. Это было сделано специально для того, чтобы сделать красивые снимки - провисшее полотно не столь зрелищное.

Многие искажения цветов и форм рельефа в отражениях на шлемах скафандров, в которых искали фальсификат, были обусловлены золотым напылением на стекле, защищающем от ультрафиолетового . Советские космонавты, которые смотрели трансляцию высадки астронавтов в реальном времени, также подтвердили достоверность происходящего. А кто сможет обмануть эксперта в своем деле?

А полные геологические и топографические карты нашего спутника составляются по сегодняшний день. В 2009 году космическая станция LRO (англ. «Lunar Reconnaissance Orbiter», Лунный Орбитальный Зонд) не только доставила самые детальные снимки Луны в истории, но и доказала наличие на ней большого количества замерзшей воды. Он же поставил точку в дискуссии о том, были ли люди на Луне, засняв следы деятельности команды «Аполлон» с низкой орбиты Луны. Аппарат был укомплектован оборудованием из нескольких стран мира, в том числе и из России.

Так как к исследованию Луны подключаются новые космические государства вроде Китая и частные компании, свежие данные поступают каждый день. Мы собрали основные параметры нашего спутника:

  • Площадь поверхности Луны занимает 37,9х10 6 квадратных километров - около 0,07% от всей площади Земли. Невероятно, но это лишь на 20% превышает площадь всех заселенных человеком местностей на нашей планете!
  • Средняя плотность Луны 3,4 г/см 3 . Она на 40% меньше плотности Земли - в первую очередь из-за того, что спутник лишен многих тяжелых элементов вроде железа, которыми богата наша планета. Кроме того, 2% массы Луны приходится на реголит - мелкую крошку камня, созданную космической эрозией и ударами метеоритов, плотность которой ниже обычной породы. Его толща в отдельных местах достигает десятков метров!
  • Все знают, что Луна намного меньше Земли, что сказывается на ее гравитации. Ускорение свободного падения на ней составляет 1,63 м/с 2 - всего 16,5 процентов от всей силы притяжения Земли. Прыжки астронавтов на Луне были очень высокими несмотря даже на то, что их скафандры весили 35,4 килограмма - почти как рыцарские доспехи! При этом они еще сдерживались: падение в условиях вакуума было достаточно опасным. Ниже - видео прыжков астронавта из прямой трансляции.

  • Лунные моря охватывают около 17% всей Луны - в основном ее видимую сторону, которая почти на треть покрыта ими. Они являются следами ударов особенно тяжелых метеоритов, которые буквально сорвали со спутника его кору. В этих местах от мантии Луны поверхность отделяет лишь тонкий, полукилометровый слой застывшей лавы - базальта. Поскольку ближе к центру любого большого космического тела концентрация твердых веществ растет, в лунных морях больше металла, чем где-либо по Луне.
  • Основная форма рельефа Луны - это кратеры и другие производные от ударов и ударными волнами, которастероидов. Лунные горы и цирки были построены громадными ые изменяли структуру поверхности Луны до неузнаваемости. Особенно сильна их роль была в начале истории Луны, когда та была еще жидкой - падения поднимали целые волны расплавленного камня. Это же стало причиной образования лунных морей: обращенная к Земле сторона была сильнее раскалена из-за концентрации в ней тяжелых веществ, из-за чего астероиды влияли на нее сильнее, чем на прохладную обратную сторону. Причиной такого неравномерного распределения вещества стало притяжение Земли, особенно сильное в начале истории Луны, когда та была ближе.

  • Кроме кратеров, гор и морей, в луне существуют пещеры и трещины - уцелевшие свидетели тех времен, когда недра Луны были также раскалены, как и , и на ней действовали вулканы. В этих пещерах часто присутствуют водные льды, как и у кратеров на полюсах, из-за чего их часто рассматривают как места для будущих лунных баз.
  • Настоящий цвет поверхности Луны - очень темный, ближе к черному. По всей же Луне попадаются самый разные цвета - от бирюзово-голубого до почти оранжевого. Светло-серый оттенок Луны из Земли и на снимках обусловлен высокой освещенностью Луны Солнцем. Из-за темного цвета, поверхность спутника отражает лишь 12% от всех лучей, падающих от нашего светила. Будь Луна светлее - и во время полнолуний было бы светло как днем.

Как сформировалась Луна?

Исследование минералов Луны и ее история - одна из самых тяжелых для ученых дисциплин. Поверхность Луны открыта для космических лучей, а тепло у поверхности нечему задерживать - поэтому спутник днем накаляется до 105° C, а ночью остывает до –150° C. Двухнедельная продолжительность дня и ночи усиливает влияние на поверхность - и в итоге минералы Луны изменяются до неузнаваемости со временем. Однако удалось кое-что выяснить.

Сегодня считается, что Луна - это продукт столкновения крупного зародыша планеты, Тейи, с Землей, который произошел миллиарды лет назад, когда наша планета была полностью расплавленной. Часть столкнувшейся с нами планеты (а она была размером с ) была поглощена - но ее ядро вместе с частью поверхностной материи Земли было выброшено по инерции на орбиту, где и осталалось в виде Луны.

Это доказывает уже упоминавшийся выше дефицит железа и других металлов на Луне - к тому времени, когда Тейя, вырвала кусок земного вещества, большая часть тяжелых элементов нашей планеты была притянута гравитацией внутрь, к ядру. Это столкновение отразилось на дальнейшем развитии Земли - она стала вращаться быстрее, а ось ее вращения наклонилась, из-за чего стала возможной смена сезонов.

Дальше Луна развивалась как обычная планета - у нее сформировалось железное ядро, мантия, кора, литосферные плиты и даже своя атмосфера. Однако малая масса и бедный на тяжелые элементы состав привел к тому, что недра нашего спутника быстро остыли, а атмосфера - испарилась от высокой температуры и отсутствия магнитного поля. Однако кое-какие процессы внутри все еще происходят - из-за движений в литосфере Луны иногда происходят лунотрясения. Они представляют одну из главных опасностей для будущих колонизаторов Луны: их размах доходит до 5 с половиной баллов по шкале Рихтера, а длятся они куда дольше земных - нет океана, способного вобрать в себя импульс движения земных недр.

Основные химические элементы на Луне - это кремний, алюминий, кальций и магний. Минералы, которые образуют эти элементы, схожие с земными и даже встречаются на нашей планете. Однако главное отличие минералов Луны - это отсутствие воздействия воды и кислорода, вырабатываемого живыми существами, высокая доля метеоритных примесей и следы воздействия космического излучения. Озоновый слой Земли сформировался достаточно давно, а атмосфера сжигает большую часть массы падающих метеоритов, позволяя воде и газам медленно, но уверенно менять облик нашей планеты.

Будущее Луны

Луна - это первое космическое тело после Марса, которое претендует на первоочередную колонизацию человеком. В некотором смысле Луна уже освоена - СССР и США оставили на спутнике государственные регалии, а орбитальные радиотелескопы прячутся за обратной стороной Луны от Земли, генератора множества помех в эфире. Однако что ждет наш спутник в будущем?

Главный процесс, о котором уже не раз упоминалось в статье - это отдаление Луны за счет приливного ускорения. Оно происходит достаточно медленно - спутник улетает не больше чем на 0,5 сантиметра в год. Однако важно тут совершенно другое. Дистанцируясь от Земли, Луна замедляет ее вращение. Рано или поздно может наступить момент, когда сутки на Земле будут длиться столько же, сколько лунный месяц - 29–30 дней.

Однако у удаления Луны будет свой предел. После его достижения, Луна начнет витками приближаться к Земле - причем куда быстрее, чем отдалялась. Полностью врезаться ей, однако, не удастся. За 12–20 тысяч километров от Земли начинается ее полость Роша - гравитационный предел, при котором спутник какой-либо планеты может сохранять твердую форму. Поэтому Луна на подлете будет разорвана на миллионы маленьких фрагментов. Часть из них упадет на Землю, устроив бомбардировку в тысячи раз мощнее ядерной, а остальные образуют вокруг планеты кольцо наподобие . Однако оно будет не таким ярким - кольца газовых гигантов состоят изо льда, который в разы ярче темных пород Луны - их не всегда будет видно на небе. Кольцо Земли создаст проблему астрономам будущего - если, конечно, к тому времени на планете кто-либо останется.

Колонизация Луны

Однако все это произойдет через миллиарды лет. А до тех пор человечество рассматривает Луну как первый потенциальный объект для космической колонизации. Однако что именно подразумевается под «освоением Луны»? Сейчас мы вместе просмотрим ближайшие перспективы.

Многие представляют колонизацию космоса подобно колонизации Земли времен Нового Века - поиск ценных ресурсов, их добыча, а затем доставка обратно домой. Однако это неприменимо к космосу - в ближайшие пару сотен лет доставка килограмма золота даже с ближайшего астероида будет обходиться дороже, чем его добыча из самых сложных и опасных для работы шахт. Также Луна вряд ли выступит «дачным сектором Земли» в ближайшем будущем - хотя там и есть большие месторождения ценных ресурсов, там будет тяжело выращивать еду.

Зато наш спутник вполне может стать базой для дальнейшего освоения космоса в перспективных направлениях - например, того же Марса. Главная проблема космонавтики на сегодняшний день - это ограничения по весу космических аппаратов. Для запуска приходится строить монструозные конструкции, которым нужны тонны топлива - ведь нужно преодолеть не только притяжение Земли, но и атмосферу! А если это межпланетный корабль, то нужно его еще и заправить. Это серьезно стесняет конструкторов, принуждая их предпочитать экономность функциональности.

Луна подходит для стартовой площадки космических кораблей куда лучше. Отсутствие атмосферы и низкая скорость для преодоления притяжения Луны - 2,38 км/c против 11,2 км/с Земли - делают запуски намного проще. А залежи полезных ископаемых спутника позволяют сэкономить на весе топлива - камне на шее космонавтики, который занимает значительную долю массы любого аппарата. Если развернуть производство ракетного топлива на Луне, можно будет запускать большие и сложные космические корабли, собранные с деталей, доставленных с Земли. Да и сборка на Луне будет куда проще, чем на околоземной орбите - и намного надежнее.

Существующие на сегодняшний день технологии позволяют если не полностью, то частично осуществить этот проект. Однако любые шаги в эту сторону требуют риска. Вложение громадных денег потребуют исследования на предмет нужных ископаемых, а также разработка, доставка и тестирование модулей будущих лунных баз. А одна предполагаемая стоимость запуска даже первоначальных элементов способна разорить целую сверхдержаву!

Поэтому колонизация Луны - это предмет не столько работы ученых и инженеров, сколько людей всего мира для достижения столь ценного единства. Ибо в единстве человечества кроется истинная сила Земли.