Клеточное дыхание протекает в цитоплазме. Процесс клеточного дыхания и его этапы. Что такое клеточное дыхание

Поток энергии в клетке

В основе потока энергии в клетке лежат процессы питания организмов и клеточного дыхания.

1. Питание – процесс приобретения вещества и энергии живыми организмами.

2. Клеточное дыхание – процесс, с помощью которого живые организмы высвобождают энергию из богатых ею органических веществ при их ферментативном расщеплении (диссимиляции) до более простых. Клеточное дыхание может быть аэробным и анаэробным.

3. Аэробное дыхание – получение энергии происходит при участии кислорода в процессе расщепления органических веществ. Его еще называют кислородным (аэробным) этапом энергетического обмена.

Анаэробное дыхание – получение энергии из пищи без использования свободного атмосферного кислорода. В общем виде поток энергии в клетке можно представить следующим образом (рис 5.3.)

ПИЩА
САХАР, ЖИРНЫЕ КИСЛОТЫ, АМИНО-КИСЛОТЫ
КЛЕТОЧНОЕ ДЫХАНИЕ
АТФ
СО 2 , Н 2 О, NH 3
ХИМИЧЕСКАЯ, МЕХАНИЧЕСКАЯ, ЭЛЕКТРИЧЕСКАЯ, ОСМОТИЧЕСКАЯ РАБОТА
АДФ + Н 3 РО 4

Рис.5.3. Поток энергии в клетке

Химическая работа : биосинтез в клетке белков, нуклеиновых кислот, жиров, полисахаридов.

Механическая работа : сокращение мышечных волокон, биение ресничек, расхождение хромосом при митозе.

Электрическая работа – поддержание разности потенциалов на мембране клетки.

Осмотическая работа – поддержание градиентов вещества в клетке и окружающей ее среде.

Процесс аэробного дыхания проходит в три этапа: 1) подготовительный; 2) бескислородный; 3) кислородный.

Первый этап подготовительный или этап пищеварения , включающий в себя ферментативное расщепление полимеров до мономеров: белков до аминокислот, жиров до глицерина и жирных кислот, гликогена и крахмала до глюкозы, нуклеиновых кислот до нуклеотидов. Протекает в желудочно-кишечном тракте при участии пищеварительных ферментов и цитоплазме клеток при участии ферментов лизосом.

На этом этапе выделяется небольшое количество энергии, рассеивающейся в виде тепла, а образовавшиеся мономеры подвергаются в клетках дальнейшему расщеплению или используются как строительный материал.

Второй этап анаэробный (бескислородный). Он протекает в цитоплазме клеток без участия кислорода. Мономеры, образовавшиеся на первом этапе, подвергаются дальнейшему расщеплению. Примером такого процесса является гликолиз бескислородное неполное расщепление глюкозы.

В реакциях гликолиза из одной молекулы глюкозы (С 6 Н 12 О 6) образуются две молекулы пировиноградной кислоты (С 3 Н 4 О 3 – ПВК). При этом от каждой молекулы глюкозы отщепляется 4 атома Н + и образуются 2 молекулы АТФ. Атомы Водорода присоединяются к НАД + (никотинамидадениндинуклеотид, функция НАД и подобных к нему переносчиков состоит в том, чтобы в первой реакции принимать Водород (восстанавливаться), а в другой – его отдавать (окисляться).



Сумарное уравнение гликолиза выглядит так:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О +2НАД·Н 2

В процессе гликолиза выделяется 200 кДж/моль энергии, из которой 80 кДж или 40% идет на синтез АТФ, а 120 кДж (60%) рассеивается в виде тепла.

а) в животных клетках образуется 2 молекулы молочной кислоты, которая в дальнейшем превращается в гликоген и депонируется в печени;

б) в растительных клетках происходит спиртовое брожжение с выделением СО 2. Конечным продуктом является этанол.

Анаэробное дыхание по сравнению с кислородным дыханием эволюционно более ранняя, но менее эффективная форма получения энергии из питательных веществ.

Третий этап аэробный (кислородный, тканевое дыхание) протекает в митохондриях и требует присутствие кислорода .

Органические соединения, образовавшиеся на предыдущем бескислородном этапе, окисляются путем отщепления водорода до СО 2 и Н 2 О. Отсоеденившееся атомы Водорода с помощью переносчиков передаются до Кислорода, взаимодействуют с ним и образуют воду. Этот процесс сопровождается выделением значительного количества энергии, часть которой (55%) идет на образование воды. В кислородном этапе можно выделить реакции цикла Кребса и реакции окислительного фосфорилирования.

Цикл Кребса (цикл трикарбоновых кислот) происходит в матриксе митохондрий. Его открыл английский биохимик Х. Кребс в 1937 году.

Цикл Кребса начинается реакцией пировиноградной кислоты с уксуснокислой. При этом образуется лимонная кислота, которая после ряда последовательных преобразований снова становится уксуснокислой и цикл повторяется.

В ходе реакций цикла Кребса из одной молекулы ПВК образуется 4 пары атомов Водорода, две молекулы СО 2 , одна молекула АТФ. Углекислый газ выводится из клетки, а атомы Водорода присоединяются к молекулам переносчиков – НАД и ФАД (флавинадениндинуклеотид), в результате чего образуются НАД·Н 2 и ФАД·Н 2.

Передача энергии от НАД· Н 2 и ФАД·Н 2, которые оброзовались в цыкле Кребса и на предыидущем анаэробном этапе, к АТФ просходит на внутренней мембране митохондрий в дыхательной цепи.

Дыхательная цепь или цепь переноса электронов (электронно-транспрортная цепь) содержится во внутренней мембране митохондрий. Её основу составляют переносчики электронов, которые входят в состав ферментных комплексов, катализирующих окислительно-востановительные реакции.

Пары Водорода отщепляются от НАД·Н 2 и ФАД·Н 2, в виде протонов и электронов (2Н + +2е), поступают в электронно-транспортную цепь. В дыхательной цепи они вступают в ряд биохимических реакций, конечный результат которых – синтез АТФ (рис.5.4.)

Рис. 5.4 Электронно-транспортная цепь

Электроны и протоны захватываются молекулами переносчиков дыхательной цепи и переправляются: электроны на внутреннюю сторону мембраны, а протоны на внешнюю. Электроны соединяются с Кислородом. Атомы Кислорода при этом становятся отрицательно заряженными:

О 2 + е - = О 2 -

На внешней стороне мембраны накапливаются протоны (Н +), а изнутри анионы (О 2-). В результате этого возрастает разность потенциалов.

В некоторых местах мембраны встроены молекулы фермента для синтеза АТФ (АТФ-синтетаза), который имеет ионный (протонный) канал. Когда разница потенциалов на мембране достигает 200мВ, протоны (Н +) силой электрического поля проталкиваются через канал и проходят на внутреннюю сторону мембраны где взаимодействуют с О 2 - , образуя Н 2 О

½ О 2 + 2Н + = Н 2 О

Кислород, поступающий в митохондрии необходим для присоединения электронов (е -), а затем протонов (Н+). При отсутствии О 2 процессы, связанные с транспортом протонов и электронов, прекращаются. В этих случаях многие клетки синтезируют АТФ, расщепляя питательные вещества в процессе брожения.

Суммарное уравнение кислородного этапа

2С 3 Н 4 О 3 + 36Н 3 РО 4 + 6О 2 + 36 АДФ = 6СО 2 + 42 Н 2 О + 36АТФ + 2600кДж

1440 (40·36) аккумулируется в АТФ

1160 кДж выделяются в виде тепла

Суммарное уравнение кислородного дыхания, включающее бескислородный и кислородный этапы :

С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 + 6О 2 = 38АТФ +6СО 2 + 44Н 2 О

Конечные продукты энергетического обмена (СО 2 , Н 2 О, NH 3), а также избыток энергии выделяются из клетки через клеточную мембрану, строение и функции которой заслуживают особого внимания.

Энергетический обмен - это по-этапный распад сложных органических соединений, протекающий с выделением энергии, которая запасается в макроэргических связях молекул АТФ и используется потом в процессе жизнедеятельности клетки, в том числе на биосинтез, т.е. пластический обмен.

В аэробных организмах выделяют:

  1. Подготовительный - расщепление биополимеров до мономеров.
  2. Бескислородный - гликолиз - расщепление глюкозы до пировиноградной кислоты.
  3. Кислородный - расщепление пировиноградной кислоты до углекислого газа и воды.

Подготовительный этап

На подготовительном этапе энергетического обмена происходит расщепление поступивших с пищей органических соединений на более простые, обычно мономеры. Так углеводы расщепляются до сахаров, в том числе глюкозы; белки - до аминокислот; жиры - до глицерина и жирных кислот.

Хотя при этом выделяется энергия, она не запасается в АТФ и, следовательно, не может быть использована впоследствии. Энергия рассеивается в виде тепла.

Расщепление полимеров у многоклеточных сложноорганизованных животных протекает в пищеварительном тракте под действием выделяющихся сюда железами ферментов. Затем образовавшиеся мономеры всасываются в кровь в основном через кишечник. Уже кровью питательные вещества разносятся по клеткам.

При этом не все вещества разлагаются до мономеров в пищеварительной системе. Расщепление многих происходит непосредственно в клетках, в их лизосомах. У одноклеточных организмов поглощенные вещества попадают в пищеварительные вакуоли, где и перевариваются.

Образовавшиеся мономеры могут использоваться как для энергетического, так и пластического обмена. В первом случае они расщепляются, во-втором – из них синтезируются компоненты самих клеток.

Бескислородный этап энергетического обмена

Бескислородный этап протекает в цитоплазме клеток и в случае аэробных организмов включает только гликолиз - ферментативное многоступенчатое окисление глюкозы и ее расщепление до пировиноградной кислоты , которую также называют пируватом.

Молекула глюкозы включает шесть атомов углерода. При гликолизе она расщепляется до двух молекул пирувата, который включает три атома углерода. При этом отщепляется часть атомов водорода, которые передаются на кофермент НАД, который, в свою очередь, потом будет участвовать в кислородном этапе.

Часть выделяющейся при гликолизе энергии запасается в молекулах АТФ. На одну молекулу глюкозы синтезируется всего две молекулы АТФ.

Энергия, оставшаяся в пирувате, запасенная в НАД, у аэробов далее будет извлечена на следующем этапе энергетического обмена.

В анаэробных условиях, когда кислородный этап клеточного дыхания отсутствует, пируват «обезвреживается» в молочную кислоту или подвергается брожению. При этом энергия не запасается. Таким образом, здесь полезный энергетический выход обеспечивается только малоэффектвным гликолизом.

Кислородный этап

Кислородный этап протекает в митохондриях . В нем выделяют два подэтапа: цикл Кребса и окислительное фосфорилирование. Поступающий в клетки кислород используется только на втором. В цикле Кребса происходит образование и выделение углекислого газа.

Цикл Кребса протекает в матриксе митохондрий, осуществляется множеством ферментов. В него поступает не сама молекула пировиноградной кислоты (или жирной кислоты, аминокислоты), а отделившаяся от нее с помощью кофермента-А ацетильная группа, включающая два атома углерода бывшего пирувата. За многоступенчатый цикл Кребса происходит расщепление ацетильной группы до двух молекул CO 2 и атомов водорода. Водород соединяется с НАД и ФАД. Также происходит синтез молекулы ГДФ, приводящей к синтезу потом АТФ.

На одну молекулу глюкозы, из которой образуется два пирувата, приходится два цикла Кребса. Таким образом, образуется две молекулы АТФ. Если бы энергетический обмен заканчивался здесь, то суммарно расщепление молекулы глюкозы давало бы 4 молекулы АТФ (две от гликолиза).

Окислительное фосфорилирование протекает на кристах – выростах внутренней мембраны митохондрий. Его обеспечивает конвейер ферментов и коферментов, образующий так называемую дыхательную цепь, заканчивающуюся ферментом АТФ-синтетазой.

По дыхательной цепи происходит передача водорода и электронов, поступивших в нее от коферментов НАД и ФАД. Передача осуществляется таким образом, что протоны водорода накапливаются с внешней стороны внутренней мембраны митохондрий, а последние ферменты в цепи передают только электроны.

В конечном итоге электроны передаются молекулам кислорода, находящимся с внутренней стороны мембраны, в результате чего они заряжаются отрицательно. Возникает критический уровень градиента электрического потенциала, приводящий к перемещению протонов через каналы АТФ-синтетазы. Энергия движения протонов водорода используется для синтеза молекул АТФ, а сами протоны соединяются с анионами кислорода с образованием молекул воды.

Энергетический выход функционирования дыхательной цепи, выраженный в молекулах АТФ, велик и суммарно составляет от 32 до 34 молекул АТФ на одну исходную молекулу глюкозы.

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал . Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

См. также

Напишите отзыв о статье "Клеточное дыхание"

Примечания

Отрывок, характеризующий Клеточное дыхание

Дни шли, а я не знала, была ли моя девочка всё ещё в Мэтэоре? Не появлялся ли за ней Караффа?.. И всё ли было с ней хорошо.
Моя жизнь была пустой и странной, если не сказать – безысходной. Я не могла покинуть Караффу, так как знала – стоит мне только исчезнуть, и он тут же выместит свою злость на моей бедной Анне... Также, я всё ещё не в силах была его уничтожить, ибо не находила пути к защите, которую подарил ему когда-то «чужой» человек. Время безжалостно утекало, и я всё сильнее чувствовала свою беспомощность, которая в паре с бездействием, начинала медленно сводить меня с ума...
Прошёл почти уже месяц после моего первого визита в подвалы. Рядом не было никого, с кем я могла бы обмолвиться хотя бы словом. Одиночество угнетало всё глубже, поселяя в сердце пустоту, остро приправленную отчаяньем...
Я очень надеялась, что Мороне всё-таки выжил, несмотря на «таланты» Папы. Но возвращаться в подвалы побаивалась, так как не была уверена, находился ли там всё ещё несчастный кардинал. Мой повторный визит мог навлечь на него настоящую злобу Караффы, и платить за это Мороне пришлось бы по-настоящему дорого.
Оставаясь отгороженной от любого общения, я проводила дни в полнейшей «тишине одиночества». Пока, наконец, не выдержав более, снова спустилась в подвал...
Комната, в которой я месяц назад нашла Мороне, на этот раз пустовала. Оставалось только надеяться, что отважный кардинал всё ещё жил. И я искренне желала ему удачи, которой узникам Караффы, к сожалению, явно не доставало.
И так как я всё равно уже находилась в подвале, то, чуть подумав, решила посмотреть его дальше, и осторожно открыла следующую дверь....
А там, на каком-то жутком пыточном «инструменте» лежала совершенно голая, окровавленная молодая девушка, тело которой представляло собою настоящую смесь живого палёного мяса, порезов и крови, покрывавших её всю с головы до ног... Ни палача, ни, тем более – Караффы, на моё счастье, в комнате пыток не было.
Я тихонько подошла к несчастной и осторожно погладила её по опухшей, нежной щеке. Девушка застонала. Тогда, бережно взяв её хрупкие пальцы в свою ладонь, я медленно начала её «лечить»... Вскоре на меня удивлённо глядели чистые, серые глаза...
– Тихо, милая... Лежи тихо. Я попробую тебе помочь, насколько это возможно. Но я не знаю, достаточно ли у меня будет времени... Тебя очень сильно мучили, и я не уверена, смогу ли всё это быстро «залатать». Расслабься, моя хорошая, и попробуй вспомнить что-то доброе... если сможешь.
Девушка (она оказалась совсем ещё ребёнком) застонала, пытаясь что-то сказать, но слова почему-то не получались. Она мычала, не в состоянии произнести чётко даже самого краткого слова. И тут меня полоснуло жуткое понимание – у этой несчастной не было языка!!! Они его вырвали... чтобы не говорила лишнего! Чтобы не крикнула правду, когда будут сжигать на костре... Чтобы не могла сказать, что они с ней творили...
О боже!.. Неужели всё это вершили ЛЮДИ???
Чуть успокоив своё омертвевшее сердце, я попыталась обратиться к ней мысленно – девочка услышала. Что означало – она была одарённой!.. Одной из тех, кого Папа так яростно ненавидел. И кого так зверски сжигал живьём на своих ужасающих человеческих кострах....
– Что же они с тобой сделали, милая?!.. За что тебе отняли речь?!
Стараясь затянуть повыше упавшее с её тела грубое рубище непослушными, дрожащими руками, потрясённо шептала я.
– Не бойся ничего, моя хорошая, просто подумай, что ты хотела бы сказать, и я постараюсь услышать тебя. Как тебя зовут, девочка?
– Дамиана... – тихо прошелестел ответ.
– Держись, Дамиана, – как можно ласковее улыбнулась я. – Держись, не ускользай, я постараюсь помочь тебе!
Но девушка лишь медленно качнула головой, а по её избитой щеке скатилась чистая одинокая слезинка...
– Благодарю вас... за добро. Но я не жилец уже... – прошелестел в ответ её тихий «мысленный» голос. – Помогите мне... Помогите мне «уйти». Пожалуйста... Я не могу больше терпеть... Они скоро вернутся... Прошу вас! Они осквернили меня... Пожалуйста, помогите мне «уйти»... Вы ведь знаете – как. Помогите... Я буду и «там» благодарить, и помнить вас...
Она схватила своими тонкими, изуродованными пыткой пальцами моё запястье, вцепившись в него мёртвой хваткой, будто точно знала – я и вправду могла ей помочь... могла подарить желанный покой...
Острая боль скрутила моё уставшее сердце... Эта милая, зверски замученная девочка, почти ребёнок, как милости, просила у меня смерти!!! Палачи не только изранили её хрупкое тело – они осквернили её чистую душу, вместе изнасиловав её!.. И теперь, Дамиана готова была «уйти». Она просила смерти, как избавления, даже на мгновение, не думая о спасении. Она была замученной и осквернённой, и не желала жить... У меня перед глазами возникла Анна... Боже, неужели и её ждал такой же страшный конец?!! Смогу ли я её спасти от этого кошмара?!
Дамиана умоляюще смотрела на меня своими чистыми серыми глазами, в которых отражалась нечеловечески глубокая, дикая по своей силе, боль... Она не могла более бороться. У неё не хватало на это сил. И чтобы не предавать себя, она предпочитала уйти...
Что же это были за «люди», творившие такую жестокость?!. Что за изверги топтали нашу чистую Землю, оскверняя её своей подлостью и «чёрной» душой?.. Я тихо плакала, гладя милое лицо этой мужественной, несчастной девчушки, так и не дожившей даже малой частью свою грустную, неудавшуюся жизнь... И мою душу сжигала ненависть! Ненависть к извергу, звавшему себя римским Папой... наместником Бога... и святейшим Отцом... наслаждавшимся своей прогнившей властью и богатством, в то время, как в его же жутком подвале из жизни уходила чудесная чистая душа. Уходила по собственному желанию... Так как не могла больше вынести запредельную боль, причиняемую ей по приказу того же «святого» Папы...
О, как же я ненавидела его!!!.. Всем сердцем, всей душой ненавидела! И знала, что отомщу ему, чего бы мне это ни стоило. За всех, кто так зверски погиб по его приказу... За отца... за Джироламо... за эту добрую, чистую девочку... и за всех остальных, у кого он играючи отнимал возможность прожить их дорогую и единственную в этом теле, земную жизнь.
– Я помогу тебе, девочка... Помогу тебе милая... – ласково баюкая её, тихо шептала я. – Успокойся, солнышко, там не будет больше боли. Мой отец ушёл туда... Я говорила с ним. Там только свет и покой... Расслабься, моя хорошая... Я исполню твоё желание. Сейчас ты будешь уходить – не бойся. Ты ничего не почувствуешь... Я помогу тебе, Дамиана. Я буду с тобой...
Из её изуродованного физического тела вышла удивительно красивая сущность. Она выглядела такой, какой Дамиана была, до того, как появилась в этом проклятом месте.
– Спасибо вам... – прошелестел её тихий голос. – Спасибо за добро... и за свободу. Я буду помнить вас.
Она начала плавно подниматься по светящемуся каналу.
– Прощай Дамиана... Пусть твоя новая жизнь будет счастливой и светлой! Ты ещё найдёшь своё счастье, девочка... И найдёшь хороших людей. Прощай...
Её сердце тихо остановилось... А исстрадавшаяся душа свободно улетала туда, где никто уже не мог причинять ей боли. Милая, добрая девочка ушла, так и не узнав, какой чудесной и радостной могла быть её оборванная, непрожитая жизнь... скольких хороших людей мог осчастливить её Дар... какой высокой и светлой могла быть её непознанная любовь... и как звонко и счастливо могли звучать голоса её не родившихся в этой жизни детей...
Успокоившееся в смерти лицо Дамианы разгладилось, и она казалась просто спящей, такой чистой и красивой была теперь... Горько рыдая, я опустилась на грубое сидение рядом с её опустевшим телом... Сердце стыло от горечи и обиды за её невинную, оборванную жизнь... А где-то очень глубоко в душе поднималась лютая ненависть, грозясь вырваться наружу, и смести с лица Земли весь этот преступный, ужасающий мир...

Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания.
С кровью кислород проникает в клетку, вернее в особые клеточные структуры – митохондрии. Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами – белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе – аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.


Дыхание, в отличие от горения, процесс многоступенчатый. В нем выделяют две основные стадии: гликолиз и кислородный этап.

Гликолиз

Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. «гликис» - «сладкий» и «лисис» – «распад»). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.
Гликолиз – процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое – свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно.

Кислородный этап дыхания

Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. «Дожигание» происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) – последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу. Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода.
Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры – очень богатый источник энергии. Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки – неприкосновенный запас.
Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями – в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.

Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести «выход» молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше.
Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты– соседи по дыхательной цепи –соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз“прошивает”ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались. А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.

Дыхание является процессом, дающим энергию, однако его биологическое значение этим не ограничивается. В результате химических реакций, сопровождающих дыхание, образуется большое количество промежуточных соединений. Из этих соединений, имеющих различное количество углеродных атомов, могут синтезироваться самые разнообразные вещества клетки: аминокислоты, жирные кислоты, жиры, белки, витамины.

Поэтому обмен углеводов определяет остальные обмены веществ (белков, жиров). В этом его огромное значение.

С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов - способность испускать видимый свет - люминесцировать.

Известно, что ряд живых организмов, в том числе бактерии, могут испускать видимый свет. Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, находящихся в симбиозе с мелкими морскими животными, иногда приводит к свечению моря; с люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.

К основным компонентам, взаимодействие между которыми приводит к испусканию света, относятся восстановленные формы ФМН или НАД, молекулярный кислород, фермент люцифераэа и окисляемое соединение - люциферин. Предполагается, что восстановленные НАД или ФМН реагируют с люциферазой, кислородом и люциферином, в результате чего электроны в некоторых молекулах переходят в возбужденное состояние и возвращение этих электронов на основной уровень сопровождается испусканием света. Люминесценцию у микробов рассматривают как «расточительный процесс», так как при этом энергетическая эффективность дыхания снижается.



Клеточное дыхание

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на жизнедеятельность клетки.

Биологически полезная энергия представляет собой поток электронов, идущий с более высоких энергетических уровней на более низкие. Происходит это так: под действием фермента от молекулы питательного вещества (углевода, жира, белка) отнимаются протоны (то есть атомы водорода), а вместе с ними и электроны. Этот процесс известен под названием дегидрирования. Отнятые электроны передаются на специальное вещество, которое называется акцептором. Далее другие ферменты отнимают электроны от первичного акцептора и передают их на другой и так далее, пока полностью не израсходуется энергия электрона или не запасется в виде энергии химических связей (аденозинтрифосфат). В конечном счете кислород реагирует с ионами водорода и отдавшими энергию электронами, превращается в воду, которая выводится из организма. Этот поток электронов получил название «электронного каскада». Для большей наглядности его можно представить в виде ряда водопадов, каждый водопад вращает турбину – отдает энергию, пока не отдаст ее полностью. На самом верху «вода» – пищевое вещество, от которого будут отниматься электроны и протоны (субстрат), а внизу – «отработавшая вода» – электроны и протоны с пониженной энергетикой, соединенные с кислородом (вода), и то, что остается от субстрата, – которая подлежит выделению.

Теперь рассмотрим этот же процесс с позиции деструктуризации (энтропии, то есть распада). Каждая молекула пищевого вещества имеет свою собственную пространственную структуру. При дегидрировании тот или иной фермент может отщепить лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле. В результате ряда таких последовательных отщеплений вещество со сложной структурой разрушается до простых составляющих. Энергия связи, освобождаясь, используется нашим организмом на собственное укрепление: поддерживает собственные структуры белков, жиров, углеводов и т. д. Таким образом, деструктуризируя пищевые вещества, организм поддерживает на стабильном уровне структуры собственного тела.

Если пища уже была ранее деструктурирована (термическая обработка, солка, сушка, рафинизация, измельчение и т. д.), то нашему организму достанется гораздо меньше энергии, заключенной в оставшихся пространственных связях. Поэтому мощь питания заключается не в калориях, а в структуре пищи. Продолжительность жизни зависит не от сытой пищи, а от структурированной.

Итак, клеточное дыхание представляет собой процесс выработки электронов, то есть электроэнергии. Э. Болл сделал расчеты, показывающие, сколько электрической энергии вырабатывается в организме при расщеплении субстратов до воды и углекислого газа. Исходя из потребления кислорода организмом взрослого человека в состоянии покоя (264 см 3 /мин), а также того факта, что каждый атом кислорода для образования молекулы воды требует двух атомов водорода и двух электронов, Болл подсчитал, что в каждую минуту во всех клетках тела с молекул усвоенных питательных веществ в процессе биологического окисления на кислород переходит 2,86 ? 1022 электронов, то есть суммарная сила тока достигает 76 ампер. Это внушительная величина: ведь через обычную 100?ваттную лампу проходит ток лишь около 1 ампера.

Переходу электронов с субстрата на кислород соответствует разность потенциалов 1,13 вольта; вольты, помноженные на амперы, дают ватты, так что 1,13 ? 76 = 85,9 ватта.

Таким образом, мощность потребления человеческим организмом приблизительно равна мощности, потребляемой стоваттной электролампой, однако при этом в организме используются значительно большие токи при значительно меньших напряжениях.

Исходя из вышеизложенного, уясним для себя роль каждого вещества в жизненном процессе. Питательные вещества служат для построения структур нашего тела, а подвергшиеся деструктуризации – дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: вода дает нам среду для протекания жизненных процессов; углекислый газ является регулятором жизненных процессов (изменяет кислотно-щелочное равновесие, активирует генетический аппарат клетки, влияет на усвоение кислорода организмом). Кислороду, потребляемому при дыхании, отводится скромная роль выводить из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации: углекислого газа и воды.

С позиции биогенных элементов углерод (18 %) является связкой, которая соединяет кислород (70 %) и водород (10 %). Не азот, а углерод является фундаментом жизни, поэтому организм всеми силами стремится к его сохранению, ориентируя весь дыхательный процесс на стабильное сохранение углерода в виде углекислого газа и других его соединений. Уменьшение в организме углерода и его соединений сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.

Вот так осуществляется третья ступень дыхания – клеточное дыхание. Причем наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее – от жирной и белковой.

Из книги Улучшение зрения без очков (без рисунков) автора Уильям Горацио Бейтс

3.6.Дыхание Кислород, как известно, играет важную роль во многих жизненных процессах, происходящих в организме. Поэтому дыхательным упражнениям уделяется большое внимание практически во всех системах оздоровления человека. Не стал исключением и метод Бэйтса. Некоторыми

Из книги Наука о дыхании индийских йогов автора Вильям Волкер Аткинсон

Глава VI ДЫХАНИЕ ЧЕРЕЗ НОЗДРИ И ДЫХАНИЕ ЧЕРЕЗ РОТ Один из первых уроков науки дыхания йогов посвящается тому, чтобы научиться дышать носом и победить обычную привычку – дышать ртом.Дыхательный механизм человека позволяет ему дышать и носом и ртом, но для него дело истинно

Из книги Как продлить быстротечную жизнь автора Николай Григорьевич Друзьяк

АТФ - УНИВЕРСАЛЬНОЕ КЛЕТОЧНОЕ ГОРЮЧЕЕ И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка - это отдельный микромир, имеющий четкие границы, внутри которых существует непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Клеточное дыхание Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически

Из книги Заболевания кожи автора Автор неизвестен

Глава 1. Анатомия и гистология (клеточное строение) кожи. Особенности анатомии и гистологии кожи у детей Являясь внешним покровом тела человека, кожа имеет сложное строение и выполняет несколько важных функций. Самый большой орган человека – это кожа. Площадь кожного

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

31. Везикулярное дыхание. Бронхиальное дыхание Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или дополнительные).К основным шумам относят везикулярное дыхание, прослушиваемое над всей поверхностью легочной ткани, и

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или

Из книги Йога автора Вильям Волкер Аткинсон

Из книги Диабет. Мифы и реальность автора Иван Павлович Неумывакин

Из книги 365 золотых упражнений по дыхательной гимнастике автора Наталья Ольшевская

265. Изначальное дыхание (дыхание зародыша) Дыхание человека обычно является отражением его стиля жизни. Люди, которые все время спешат, дышат поверхностно. Те, кто имеют возможность созерцать, – дышат глубоко. Но у каждого из нас был период максимального комфорта и

Из книги Все дыхательные гимнастики. Для здоровья тех, кому за… автора Михаил Борисович Ингерлейб

Глава 5. Клеточное дыхание Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке

Из книги Упражнения цигун для начинающих автора Валерий Николаевич Хорев

Дыхание Большинство из нас почему-то думают, будто ротовое отверстие пригодно не только для употребления пищи, но также для наполнения легких. Это заблуждение! Воздух, вдыхаемый через нос, проходит сложным лабиринтом, в котором он согревается, увлажняется и освобождается

Из книги Осознанное управление здоровьем автора Дмитрий Шаменков

Дыхание 1. Практика работы с дыханием, также как и телесная практика, тесно связана с фундаментальной практикой внимательности.2. Практика работы с дыханием требует повышенного внимания, так как дыхание - исключительно важный физиологический процесс.3. Практика работы с

Из книги Йога для всех. Руководство для начинающих автора Наталья Андреевна Панина

Дыхание При выполнении различных упражнений или асан необходимо правильно дышать. Для каждого конкретного случая подходит определенный тип дыхания. Ниже будет рассказано о некоторых из

Из книги Избранные упражнения и медитации автора Ниши Кацудзо

Обратное брюшное дыхание – «даосское дыхание» «Даосское дыхание» используется при занятиях боевыми искусствами. Оно позволяет быстро увеличить энергию тела при условии, что вы вдыхаете и выдыхаете воздух через нос.При вдохе вы втягиваете живот, максимально наполняя

Из книги автора

Грудное дыхание – дыхание силы Этот вид дыхания применяется для обретения силы при тяжелом физическом труде, например переноске тяжестей, перекатывании крупных камней и тяжелых стволов деревьев, а также при подготовке спортсменов и водолазов и в боевых искусствах.Вдох